
A Deep Reinforcement Learning Approach to
Supply Chain Inventory Management

Francesco Stranieri†‡ and Fabio Stella†

†Department of Informatics, Systems, and Communication, University of Milano-Bicocca
‡Department of Control and Computer Engineering, Polytechnic University of Turin

EWRL

A Deep Reinforcement Learning Approach to
Supply Chain Inventory Management

Francesco Stranieri†‡ and Fabio Stella†

†Department of Informatics, Systems, and Communication, University of Milano-Bicocca
‡Department of Control and Computer Engineering, Polytechnic University of Turin

EWRL

Introduction

Supply chain inventory management (SCIM) is a sequential decision-making problem
consisting of determining the optimal quantity of products to produce at the factory and
to ship to different distribution warehouses over a given time horizon. Deep reinforcement
learning (DRL) algorithms are rarely applied to the SCIM field, although they can be used
to develop near-optimal policies that are difficult, or impossible at worst, to achieve using
traditional mathematical methods [1]. Moreover, when effectively applied, they suffer several
limitations [2].

Fig. 1: A divergent two-echelon supply chain consisting of a factory and its warehouse (first echelon), plus three distribution

warehouses (second echelon). Shopping carts represent customers’ demands.

In our research, a mathematical formulation of the SCIM environment is given, which in-
cludes a factory that can produce various product types, a factory warehouse, and a
certain number of distribution warehouses. To compare DRL algorithms performances, a
rich set of numerical experiments on synthetically generated data have been designed and
performed under three different scenarios: one product type one distribution warehouse
(1P1W), one product type three distribution warehouses (1P3W), and two product types
two distribution warehouses (2P2W). Each scenario involves different warehouse capaci-
ties, margin of return, demands (both in terms of maximum value and uncertainty), and
costs as well as different values of hyperparameters associated with DRL algorithms.

Problem Definition

For each product type i, each warehouse j has a maximum capacity of ci,j (
∑I

i=0 ci,j = cj),
a storage cost of zSi,j per unit, and a stock level at time t equal to qi,j,t. The DRL algorithms
determine for each product type i and time step t how many units to produce, i.e., ai,j,t
with j = 0, considering a fixed production cost of zi,0 per unit, and how many units ship
to each distribution warehouse, i.e., ai,j,t with 1 ≤ j ≤ J , assuming a transportation cost
of zTi,j per unit. Each unit of product type i is sold to customers at sale price pi, while the
(stochastic) demand at distribution warehouse j for time step t is equivalent to di,j,t units.

Variable Explanation Variable Explanation

I Number of Product Types qi,j,t Stock Level (units)
J Number of Warehouses ci,j Storage Capacity (units)
T Episode Length zSi,j Storage Cost (per unit)

ai,j,t Production and Shipping Level (units) zPi Penalty Coefficient
zi,0 Production Cost (per unit) pi Sale Price (per unit)
zTi,j Transportation Cost (per unit) di,j,t Demand (units)

Tab. 1: The considered SCIM variables with relative explanation (and units of measure). All these variables are integrated and

editable within our open-source library (available on https://github.com/frenkowski/SCIMAI-Gym).

Products are non-perishable and provided in discrete quantities. If an order for a certain
time step exceeds the corresponding stock level, a penalty cost is applied (obtained by
multiplying the penalty coefficient zPi with pi). Unsatisfied orders are also maintained over
time and are designed as a negative stock level (this corresponds to backordering).

MDP Formulation

For the state vector, we include all current stock levels for each warehouse and product
type, plus the last τ (= 5) demand values:

st = (q0,0,t, . . . , qI,J,t, dt−τ , . . . , dt−1) ,

where dt−1 = (d0,1,t−1, . . . , dI,J,t−1).
Concerning the action vector, we implement a continuous action space (i.e., the neural
network generates the action value directly):

at = (a0,0,t, . . . , aI,J,t) .

Our implementation provides an independent upper bound for each action value; for each
distribution warehouse, it corresponds to its maximum capacity with respect to each product
type (0 ≤ ai,j,t ≤ ci,j), while for the factory to the sum of all warehouses’ capacities with

regard to each product type (0 ≤ ai,0,t ≤
∑J

j=0 ci,j).
To simulate a seasonal behavior, we represent the demand as a co-sinusoidal function with
a stochastic component:

di,j,t =

⌊
dmaxi

2

(
1 + cos

(
4π(2ij + t)

T

))
+ U (0, dvari)

⌋
,

where ⌊·⌋ is the floor function, dmaxi is the maximum demand value for each product type,
U is a random variable uniformly distributed on the support (0, dvari) representing the
uncertainty, and T is the final time step of the episode.

The DRL algorithms’ goal is to maximize the supply chain profit. Accordingly, we design
the reward function for time step t as:

rt =

J∑
j=1

I∑
i=0

pi · di,j,t −
I∑

i=0

zi,0 · ai,0,t −
J∑

j=1

I∑
i=0

zTi,j · ai,j,t

−
J∑

j=0

I∑
i=0

zSi,j ·max(qi,j,t, 0) +
J∑

j=0

I∑
i=0

zPi · pi ·min(qi,j,t, 0).

The first term represents revenues, the second one production costs, while the third one
corresponds to transportation costs. The fourth term is the overall storage costs. The last
term denotes the penalty costs.
Finally, we define the state’s updating rule as follows:

st+1 = (min[(q0,0,t + a0,0,t −
J∑

j=1

a0,j,t), c0,0], · · · ,

min [(qI,J,t + aI,J,t − dI,J,t) , cI,J ] , dt+1−τ , · · · , dt).
It is worth noting that the actual demand dt will not be known until the next time step.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time Steps

0.0

2.5

5.0

7.5

D
em

an
d 

Va
lu

e WH 1, Prod 1
WH 2, Prod 1
WH 3, Prod 1

Fig. 2: An instance of the demand behavior considering the 1P3W scenario with dmax = 7 and dvar = 2.

Results

Performances achieved by state-of-the-art DRL algorithms (i.e., A3C, PPO, and VPG)
are compared with a static reorder policy, i.e., an (s, Q)-policy whose optimal parameters
have been set through a data-driven Bayesian optimization (BO) approach, and with
an oracle, i.e., a baseline who knows the optimal action to take a priori. The results of
numerical experiments demonstrate that the SCIM environment we propose is effective in
representing states, actions, and rewards; indeed, DRL algorithms, and in particular PPO,
have been able to learn nearly optimal policies in all three investigated scenarios.

A3C PPO VPG BO Oracle

Exp 1 870 ± 67 1213 ± 68 885 ± 66 1226 ± 71 1474 ± 45
Exp 2 1066 ± 94 1163 ± 66 1100 ± 77 1224 ± 60 1289 ± 68
Exp 3 −36 ± 74 195 ± 43 12 ± 61 101 ± 50 345 ± 18
Exp 4 1317 ± 60 1600 ± 62 883 ± 95 1633 ± 39 2046 ± 37
Exp 5 736 ± 45 838 ± 58 789 ± 51 870 ± 67 966 ± 55

Tab. 2: Results covering the 1P1W scenario. BO and PPO achieve a near-optimal profit in the first experiment, where the

demand is greater than the warehouses’ capacities. All DRL algorithms obtain comparable results in the second and simpler

experiment, while PPO tends to behave better in the third and more complex experiment. BO, PPO, and A3C obtain

satisfactory profits in the fourth and more balanced experiment represented by a wider search space. In the fifth experiment, the

uncertainty increases and penalties decrease, but all DRL algorithms achieve comparable and near-optimal results.

A3C PPO VPG BO Oracle

Exp 1 1606 ± 139 2319 ± 122 803 ± 154 486 ± 330 3211 ± 60
Exp 2 2196 ± 104 3461 ± 120 2568 ± 112 3193 ± 101 3848 ± 95
Exp 3 −2142 ± 128 −4337 ± 216 −2638 ± 121 -1682 ± 196 772 ± 21
Exp 4 −561 ± 237 2945 ± 135 656 ± 140 1256 ± 170 4389 ± 64
Exp 5 1799 ± 306 2353 ± 131 1341 ± 79 2203 ± 152 2783 ± 91

Tab. 3: Results regarding the 1P3W scenario. In the first experiment, characterized by a high demand, BO performs worse than

DRL algorithms. However, it achieves a nearly optimal profit in the second and simpler experiment. In the third and more

challenging experiment, none of the algorithms obtains a profit greater than zero. PPO outperforms A3C and VPG in the fourth

and more balanced experiment, characterized by an increased search space. Finally, BO and PPO achieve the best profits in the

fifth experiment, where uncertainty and search space are increased but fewer penalties are considered.

A3C PPO VPG BO Oracle

Exp 1 2227 ± 178 2783 ± 139 1585 ± 184 2086 ± 173 3787 ± 102
Exp 2 1751 ± 83 2867 ± 90 2329 ± 98 2246 ± 114 3488 ± 63
Exp 3 1414 ± 128 2630 ± 138 2434 ± 156 552 ± 268 3549 ± 103

Tab. 4: Results concerning the 2P2W scenario. The first experiment provides a balanced configuration, and PPO obtains a good

profit, as it also does A3C, which overcomes BO. For the second experiment, penalties are increased, but PPO still achieves a

nearly optimal result, and the same happens for VPG and BO. In the third experiment, with alternating storage costs, PPO,

followed by VPG, continues to perform successfully, whereas BO seems to suffer the most.

References

[1] Robert N Boute et al. “Deep reinforcement learning for inventory control: A roadmap”. In: European
Journal of Operational Research (2021).

[2] Yimo Yan et al.“Reinforcement learning for logistics and supply chain management: Methodologies, state
of the art, and future opportunities”. In: Transportation Research Part E: Logistics and Transportation
Review 162 (2022), p. 102712.


